44 // create vector 1integers3 using integersl as an

45 // initializer; print size and contents

46 vector< int > integers3(integersl); // copy constructor
47

48 cout << << integers3.size()
49 << << endl;

50 outputVector(integers3);

51

52 // use overloaded assignment (=) operator

53 cout << << endl;
54 integersl = integers2; // assigh integers2 to integersl
55

56 cout << << endl;

37 outputVector(integersl);

58 cout << << endl;

59 outputVector(integers2);

60

61 // use equality (==) operator with vector objects

62 cout << << endl;
63

64 if (integersl == integers2)

65 cout << << endl;
66

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part 3
of 7.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

67 // use square brackets to use the value at location 5 as an rvalue

68 cout << << integersl[1;

69

70 // use square brackets to create lvalue

71 cout << << endl;

72 integersl[1 = ;

73 cout << << endl;

74 outputVector(integersl);

75

76 // attempt to use out-of-range subscript

77 try

78 {

79 cout << << endl;
80 cout << integersl.at() << endl; // ERROR: out of range
81 } // end try

82 catch (out_of_range &ex)

83 {

84 cerr << << ex.what() << endl;

85 } // end catch

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part 4
of 7.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

86
87
88
89
90
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107
108
109

// changing the size of a vector

cout << << integers3.size() << endl;
integers3.push_back(); // add 1000 to the end of the vector
cout << << integers3.size() << endl;

cout << ;

outputVector(integers3);
} // end main

// output vector contents
void outputVector(const vector< int > &array)

{

for (int item : items)

cout << item << ;

cout << endl;
} // end function outputVector

// input vector contents
void inputVector(vector< 1int > &array)
{
for (int &item : items)
cin >> item;
} // end function inputVector

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part 5

of 7.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Size of vector 1integersl is 7
vector after initialization:
0000000

Size of vector 1integers2 is 10
vector after initialization:
0000000O0O00O0

Enter 17 integers:
1234567891011 12 13 14 15 16 17

After input, the vectors contain:
integersl:

1234567

integers?Z:

8 9 10 11 12 13 14 15 16 17

Evaluating: integersl !'= integers2
integersl and integers2 are not equal

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part 6
of 7.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

S1ze of vector integers3 1s 7/
vector after initialization:

1234567

Assigning integers2 to integersl:
integersl:

8 910 11 12 13 14 15 16 17
integers?2:

8 9 10 11 12 13 14 15 16 17

Evaluating: integersl == integersZ2
integersl and integers2 are equal

integersl1[5] is 13

Assigning 1000 to integersl[5]
integersl:
8 9 10 11 12 1000 14 15 16 17

Attempt to display integersl.at(15)
An exception occurred: invalid vector<T> subscript

Current integers3 size is: 7
New integers3 size is: 8
integers3 now contains: 1 2 3 4 5 6 7 1000

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part 7
of 7.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

/.10 Introduction to C++ Standard Library
Class Template vector (cont.)

By default, all the elements of a vector object are set to
0.

vectors can be defined to store most data types.

vector member function size obtain the number of
elements in the vector.

As with class template array, you can also do this using a
counter-controlled loop and the subscript ([]) operator.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

/.10 Introduction to C++ Standard Library
Class Template vector (cont.)

* You can use the assignment (=) operator with
vector objects.

* As IS the case with arrays, C++ Is not
required to perform bounds checking when
vector elements are accessed with square
brackets.

 Standard class template vector provides
bounds checking In its member function at

(as does class template array).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

/.10 Introduction to C++ Standard Library

Class Template v

ector (cont.)

An exception indicates a problem that occurs while a

program executes.

The name “exception” suggests that the problem occurs
Infrequently—if the “rule” is that a statement normally
executes correctly, then the problem represents the

“exception to the rule.”

Exception handling enables you to create fault-tolerant

programs that can resolve (or
When a function detects a pro

nandle) exceptions.
plem, such as an invalid

array subscript or an invalid

argument, it throws an

exception—that is, an exception occurs.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

/.10 Introduction to C++ Standard Library
Class Template vector (cont.)

To handle an exception, place any code that might throw an
exception in a try statement.

The try block contains the code that might throw an
exception, and the catch block contains the code that handles
the exception if one occurs.

You can have many catch blocks to handle different types of
exceptions that might be thrown in the corresponding try
block.

The vector member function at provides bounds checking
and throws an exception if its argument is an invalid subscript.

By default, this causes a C++ program to terminate.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

/.10 Introduction to C++ Standard Library
Class Template vector (cont.)

Changing the Size of a vector

* One of the key differences between a vector
and an array is that a vector can
dynamically grow to accommodate more
elements.

* To demonstrate this, line 88 shows the current
size of 1ntegers3, line 89 calls the
vector’s push_back member function to
add a new element containing 1000 to the end
of the vector-and line 90 shows the new size

/.10 Introduction to C++ Standard Library
Class Template vector (cont.)

C++11.: List Initializing a vector

* Many of the array examples in this chapter
used list initializers to specify the initial
array element values.

« C++11 also allows this for vectors (and
other C++ Standard Library data structures).

At the time of this writing, list initializers were
not yet supported for vectors in Visual C++.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

